Language preservation and agent-based computer simulations

25 March 2021

Katie Mudd Peter Dekker

Introduction

Upcoming Decade of Indigenous Languages (2022 – 2032) to focus on Indigenous language users' human rights

- Urgency of language preservation
 - Loss of language => loss of culture
 - Language as a window into cognition

https://www.swarthmore.edu/SocSci/langhotspots/old_maps.html

Introduction

ABACUS: Advancing Behavioral and Cognitive Understanding of Speech

Thanks to

European Free Alliance

Society for Endangered Languages

Today's agenda

- Introduction by Bart de Boer
- What is agent-based modeling?
- Break
- Agent-based modelling software
- Case study Kata Kolok, Indonesia (Katie Mudd)
- Participant case study: Yurakaré, Bolivia (Sonja Gipper, GBS)
- Break
- Participant case study: Hadza, Tanzania (Richard Griscom, LUCL)
- Participant case study: Friulian (Stefania Garlatti, EFA)
- Q&A

- Why is linguistic diversity important?
- For (evolutionary) linguists:
 - A link with the past
 - A repository of cultural knowledge
 - A source of information about what humans are capable of
- For ordinary people
 - A link to their past
 - A cultural heritage to be proud of
 - A way to communicate to your grandkids
 - But also: a lot of work to learn and maintain!
- But we should not forget that language death is a fact of life
 - One theory says the number of languages has been falling since the invention of agriculture
 - And speakers have excellent, respectable reasons why they switch!

The Schelling game, After Thomas Schelling

- Collective behavior is hard to predict
 - Decisions in the best interest of the individual may not lead to optimal collective behavior
 - Outcomes may be counterintuitive

- Agent-based models are tools to help deal with this
 - The VUB AI-lab has been doing this since 1995
- So far: more "fundamental" questions
 - But I am delighted that Katie and Peter are thinking about how to apply them to the worthy cause of language preservation

Flattening the curve

Covid19 Modeling the flattening of the curve (Smaldino)

A generic model of disease transmission: SIR (Susceptible - Infected - Recovered)

Covid19 Modeling the flattening of the curve (Smaldino)

Why model?

Verbal model — Formal model

- We are bad at understanding complex systems
- Articulate a system and all its parts
- What are the relationships between the parts?

(Smaldino, 2016)

Why model?

- Predicting
- Explaining
- Guiding data collection
- Discover new questions
- Offer crisis options in near-real time
- Reveal the apparently simple to be complex
- Non-invasive!

Agent-based modeling (ABM)

- Only constraint is programming it very open framework!
- Focal point is the individual

Local interactions

Global phenomenon

ABMs

Agents

- a. Internal data representations
- b. Means for modifying their internal data representations
- c. A fixed set of rules they must follow

Before interaction

After interaction

ABM outline

Language in ABMs

Language games

Language as a variable

(Agent-based) models for endangered languages

Abrams & Strogatz (2003). Modelling the dynamics of language death

Kandler et a. (2010). Language shift, bilingualism and the future of Britain's Celtic languages

de Bie & de Boer (2007). An ABM of linguistic diversity

Civico (2019). The dynamics of language minorities: Evidence from an ABM of language contact

ABMs and the real world

- Agent-based model can describe current situation, to get better insight
- ABM can evaluate effects of policy measures, but:
 - Agent-based model should not be the only evidence
 - Further (empirical) research is needed before changing policy
- We as researchers evaluate policy alternatives
 - Others can choose one alternative and implement/advocate
- We as language/Al researchers see ourselves best fit to model effects that directly influence language (e.g. education, marriage patterns)
 - Dynamics of political/economical systems on language are difficult to model

Why COVID-19 Models Don't Predict the Future

https://www.youtube.com/watch?v=wKOslhIFt6U

ABMs of specific languages

- We saw how ABMs work in general
- How to apply them to specific case studies of language endangerment?
- Case studies in second half:
 - Kata Kolok, Indonesia (Katie Mudd, VUB)
 - Yurakaré, Bolivia (Sonja Gipper, GBS)
 - Hadza, Tanzania (Richard Griscom, LUCL)
 - Friulian, Italy (Stefania Garlatti, EFA)

Questions?

Break

https://www.sciencelearn.org.nz/images/2041-six-types-of-tea

Implementing an agent-based model

- Coding from scratch (in any programming language)
- Coding with the help of software packages
 - Netlogo
 - Mesa (Python)
- Other software packages (not discussed today):
 - AgentPy (Python)
 - RNetlogo (R programming language)

Netlogo

- Visual design of models + own programming language
- Relatively little programming knowledge needed
- Desktop client (development/viewer) and online (viewer)

Netlogo desktop client

Netlogo Web: Honeycomb

Mesa

- Library for Python programming language
 - Use of other Python libraries (e.g. math, graphs)
 - Data analysis of results in Python
- No visual development: everything programmed
- Interactive visualization in browser
- Can be combined with Jupyter notebook for results analysis

https://mesa.readthedocs.io/


```
Now, we set up the batch run, with a dictionary of fixed and changing parameters. Let's hold
         everything fixed except for Homophily.
In [13]: parameters - {"height": 10, "width": 10, "density": 0.8, "minority pc": 0.2
                         'homophily': range(1,9))
In [14]; model reporters = ("Segregated Agents": get segregation)
In [24]: param sweep = BatchRonner(SchellingNodel, parameters, iterations=10,
                                     max steps=200,
                                     model reporters-model reporters)
In [25]: param sweep.run all()
In [26]: df = param sweep.get model vars dataframe()
In [28]: plt.scatter(df.homophily, df.Segregated Agents)
          plt.grid(True)
           0.2
```

Mesa tutorial: Model code

https://mesa.readthedocs.io/en/stable/tutorials/intro tutorial.html

```
class MoneyAgent(Agent):
    """ An agent with fixed initial wealth."""
    def __init__(self, unique_id, model):
        super(). init (unique id, model)
        self.wealth = 1
    def move(self):
        possible steps = self.model.grid.get_neighborhood(
            self.pos,
            moore=True,
            include_center=False)
        new_position = self.random.choice(possible_steps)
        self.model.grid.move_agent(self, new_position)
    def give_money(self):
        cellmates = self.model.grid.get_cell_list_contents([self.pos])
        if len(cellmates) > 1:
            other = self.random.choice(cellmates)
            other.wealth += 1
            self.wealth -= 1
    def step(self):
        self.move()
        if self.wealth > 0:
            self.give_money()
```

```
class MoneyModel(Model):
    """A model with some number of agents."""
   def __init__(self, N, width, height):
       self.num agents = N
        self.grid = MultiGrid(width, height, True)
       self.schedule = RandomActivation(self)
       # Create agents
       for i in range(self.num agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
           # Add the agent to a random grid cell
           x = self.random.randrange(self.grid.width)
           y = self.random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))
   def step(self):
        self.schedule.step()
```

Mesa tutorial: Visualization

https://mesa.readthedocs.io/en/stable/tutorials/adv_tutorial.html

```
from MoneyModel import *
from mesa.visualization.modules import CanvasGrid
from mesa.visualization.ModularVisualization import ModularServer
def agent_portrayal(agent):
    portrayal = {"Shape": "circle",
                 "Filled": "true",
                 "Layer": 0,
                 "Color": "red",
                 "r": 0.5}
    return portrayal
grid = CanvasGrid(agent_portrayal, 10, 10, 500, 500)
server = ModularServer(MoneyModel,
                       [grid],
                       "Money Model",
                       {"N":100, "width":10, "height":10})
server.port = 8521 # The default
server.launch()
```


Forest fire example

Questions?

Case study: Kata Kolok

Hannah Lutzenberger

- Emerged in rural community in Bali
- 7 generations ago
- Deafness is a recessive trait
- +/- 2200 individuals
- 47 deaf (2008)
- +/- 70% know the sign language
- Adapted to deafness!
 - SL acquisition from birth

Case study: Kata Kolok

Study mechanisms: How gene and culture influence SL persistence Predict result if different marriage patterns

Case study: Kata Kolok

Genetic and cultural transmission

	Α	а
Α	AA	Aa
а	aA	aa

Case study: Kata Kolok

Society for Endangered Languages

Yurakaré

Sonja Gipper

- 6,000 individuals identify as Yurakaré
 - o 1600 speak Yurakaré
 - o most bilingual, but most in younger gen monolingual in Spanish
 - Break in intergenerational transmission => endangered
- Official language of Bolivia (of 37)
- Linguistic isolate
- 16th century: contact with Spanish-speaking colonizers
- 1937: Spanish education
- Media and radio in Spanish
- 1994: intercultural bilingual education reform (failed)
- Constitution of 2009: recognizes all indigenous languages as official (but teaching is still in Spanish)
- Yurakaré language is an important part of identity

Van Gijn, Hirtzel & Gipper (2010)

Yurakaré references

Apaza Apaza, Ignacio. 2012. La descolonización cultural, lingüística y educativa en Bolivia. Estudios Bolivianos 17. 156-186.

Choque C., Roberto. 1996. La educación indigenal boliviana: El proceso educativo indígena-rural. Estudios Bolivianos 2. 125–181.

CPE (Constitución Política del Estado). 2009. Constitución Política del Estado de 2009, 7 de Febrero, 2009.

Drange Danbolt, Live. 2011. The challenge of bilingualism in a multilingual society: The Bolivian case. Journal of Intercultural Communication 27. http://immi.se/intercultural/

Gijn, Rik van. 2006. A grammar of Yurakaré. Nijmegen, The Netherlands: Radboud Universiteit.

Gijn, Rik van, Vincent Hirtzel, Sonja Gipper & Jeremías Ballivián Torrico. 2011. The Yurakaré Archive. Online language documentation, DoBeS Archive, MPI Nijmegen. https://archive.mpi.nl/tla.

Hirtzel, Vincent. 2010. Le maître à deux têtes: Enquête sur le rapport à soi d'une population d'Amazonie bolivienne, les Yuracaré. Paris: École des Hautes Études en Sciences Sociales.

Hirtzel, Vincent. 2019. Informe sobre la historia de la comunidad yurakaré "LA MISIÓN": Con datos sobre la historia de la instalación de los yuquis sobre la orilla izquierda del río Ichilo. Nanterre: Unpublished manuscript.

INE (Instituto Nacional de Estadística). 2015. Censo de población y vivienda 2012 Bolivia. Características de la población. La Paz: Instituto Nacional de Estadística.

Pinto, Libertad. 2015. Diseño de una serie animada para coadyuvar al proceso de revitalización lingüística y cultural yurakaré. Cochabamba: Universidad Mayor de San Simón MA Thesis.

Plaza Martínez, Pedro (coord.). 2011. Historia, lengua, cultura y educación en la nación yurakaré. Cochabamba: FUNPROEIB Andes.

Sánchez Camacho, Arminda Justina. 2005. Teshentala: La educación yurucaré en la práctica cultural de la caza. Cochabamba: Universidad Mayor de San Simón MA Thesis.

Yurakaré

Sonja Gipper

Van Gijn, Hirtzel & Gipper (2010)

Sonja Gipper

What is the effect of intergenerational language transmission on the persistence of Yurakaré?

non-Yurakaré (Spanish speaking)

Yurakaré less more remote remote

Break

https://www.pinterest.ca/pin/51439620728816348/

Universiteit Leiden

Centre for Linguistics

- Area: Rift Valley, Tanzania
- Language family: isolate.
- **Status:** not an official language; Swahili and English used in schools and media.
- Number of speakers: 1,000-2,000.
- Society: non-hierarchical social structure and egalitarian social practices.

https://rgris.com/hadzabe/

Richard Griscom

- Factors contributing to endangerment:
 - Shift from nomadic foraging/hunting to sedentary lifestyles in small villages, caused by:
 - loss of natural habitat as others claimed the land
 - loss of wildlife due to poaching and increasing urbanization
 - increase in tourism
 - Disruption of traditional practices associated with specialized language use
 - Language loss (especially northwest)
- Steps to prevent language extinction:
 - No formal language preservation organization within community
 - Community access is problematic: scarce access to internet, computers, or mobile phones
 - Creation of large collection of audio-visual recordings, to preserve knowledge of elders
 - Development of educational programming complicated by decentralized geographical distribution → Decentralized education?

https://rgris.com/hadzabe/

Richard Griscom

- Setting: Language game or "language as a variable" model?
- Environment representation:
 - Spatial grid? Represents habitat loss
 - Network structure? Represents decentralized contact between speakers
- Add interventions:
 - Recordings collection
 - Decentralized educational program

https://rgris.com/hadzabe/

Friulian

- European Free Alliance
 - PATTO PER L'AUTONOMIA

- Area: Friuli region, northeastern Italy
- Language family: Rhaeto-Romance, Romance, Indo-European
 - Related: Romansh (Switzerland) and Ladin (Italy)
- **Status:** recognised as minority language. Limited use in schools, by local authorities (place names) and media
- Number of speakers: 420,000 daily + 180,000 occasional. But:
 - differing fluency levels
 - not used across all social domains
- History:
 - Friulian historically used in in all social strata
 - 19th and 20th century: pressure to switch to Italian
 - Last 20-30 years: minority language status and revitalization efforts

Threats

- Population loss in rural areas; work in Italian-speaking urban areas
- Low social status → children not brought up in Friulian
- Popularity Italian-language media

Revitalization efforts (20-30 years)

- Social status improved
 - Language tools: dictionary, spellchecker, etc.
- Still decrease in fluency and number of speakers

Possible future interventions

- Engaging type of schooling (teacher certification); speaking at home not enough
- Media presence
- Economic value
 - Friulian product marketing
 - Language requirement for public service

Friulian

European Free Alliance

- Each speaker has fluency level (basic knowledge vs fluent)
- Each speaker has probability to use language in different domains (e.g. work, family)
- Social status
 - Increase social status of language:
 - Media
 - Education
 - Economic value
 - More social status → more parent-child transmission?
- Bilingualism

Resources

Epstein & Axtell (1996)

MODELS ARE STUPID, AND WE NEED MORE OF THEM

Paul E. Smaldino

Wrap up & what next?

- Agent-based models simulate interactions between speakers
- Open framework: you decide what you put in the model
- Can be used to simulate language endangerment & evaluate policy measures
 - Further research is needed before implementing measures
- What next?
 - Implement models yourself
 - Collaborate with Al/computer science/social science researchers
 - Contact us if you have questions!
 - katie.mudd@ai.vub.ac.be
 - <u>peter.dekker@ai.vub.ac.be</u>

References

- Abrams, D. M., & Strogatz, S. H. (2003). Modelling the dynamics of language death. Nature, 424(6951), 900–900. https://doi.org/10.1038/424900a
- Civico, M. (2019). The Dynamics of Language Minorities: Evidence from an Agent-Based Model of Language Contact. *Journal of Artificial Societies and Social Simulation*, 22(4), 27. https://doi.org/10.18564/jasss.4097
- De Bie, P. & de Boer, B. (2007). An agent-based model of linguistic diversity. Language, Games and Evolution, 1.
- Epstein, J. M. (2008, October 31). Why Model? [Text.Article]. JASSS. http://jasss.soc.surrey.ac.uk/11/4/12.html
- Gijn, R. van, Hirtzel, V., & Gipper, S. (2010). Updating and loss of color terminology in Yurakaré: An interdisciplinary point of view. *Language & Communication*, 30(4), 240–264. https://doi.org/10.1016/j.langcom.2010.02.002
- Kandler, A., Unger, R., & Steele, J. (2010). Language shift, bilingualism and the future of Britain's Celtic languages. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1559), 3855–3864. https://doi.org/10.1098/rstb.2010.0051
- Lutzenberger, H. (in press). Threat or natural fluctuation? Revisiting language vitality of Kata Kolok, the sign language of a village in Bali. *UNESCO World Report of Languages 2019*.
- Smaldino, P. E. (2017). Models Are Stupid, and We Need More of Them. In *Computational Social Psychology* (pp. 311–331). https://doi.org/10.4324/9781315173726-14

Questions?